A Novel Real Time System for Facial Expression Recognition

نویسندگان

  • Xiaoyi Feng
  • Matti Pietikäinen
  • Abdenour Hadid
  • Hongmei Xie
چکیده

In this paper, a fully automatic, real-time system is proposed to recognize seven basic facial expressions (angry, disgust, fear, happiness, neutral, sadness and surprise), which is insensitive to illumination changes. First, face is located and normalized based on an illumination insensitive skin model and face segmentation; then, the basic Local Binary Patterns (LBP) technique, which is invariant to monotonic grey level changes, is used for facial feature extraction; finally, a coarse-to-fine scheme is used for expression classification. Theoretical analysis and experimental results show that the proposed system performs well in variable illumination and some degree of head rotation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

A Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set

Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...

متن کامل

A Video Database for Facial Behavior Understanding

The use of new technologies in order to step up the interaction between humans and machines is the main proof that faces are important in videos. Therefore we suggest a novel Face Video Database for development, testing and verification of algorithms related to facebased applications and to facial recognition applications. In addition of facial expression videos, the database includes body vide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005